Automatic Bridge Bidding Using Deep Reinforcement Learning
نویسندگان
چکیده
Bridge is among the zero-sum games for which artificial intelligence has not yet outperformed expert human players. The main difficulty lies in the bidding phase of bridge, which requires cooperative decision making under partial information. Existing artificial intelligence systems for bridge bidding rely on and are thus restricted by human-designed bidding systems or features. In this work, we propose a pioneering bridge bidding system without the aid of human domain knowledge. The system is based on a novel deep reinforcement learning model, which extracts sophisticated features and learns to bid automatically based on raw card data. The model includes an upper-confidence-bound algorithm and additional techniques to achieve a balance between exploration and exploitation. Our experiments validate the promising performance of our proposed model. In particular, the model advances from having no knowledge about bidding to achieving superior performance when compared with a champion-winning computer bridge program that implements a human-designed bidding system.
منابع مشابه
Contract Bridge Bidding by Learning
Contract bridge is an example of an incomplete information game for which computers typically do not perform better than expert human bridge players. In particular, the typical bidding decisions of human bridge players are difficult to mimic with a computer program, and thus automatic bridge bidding remains to be a challenging research problem. Currently, the possibility of automatic bidding wi...
متن کاملBidding Strategy on Demand Side Using Eligibility Traces Algorithm
Restructuring in the power industry is followed by splitting different parts and creating a competition between purchasing and selling sections. As a consequence, through an active participation in the energy market, the service provider companies and large consumers create a context for overcoming the problems resulted from lack of demand side participation in the market. The most prominent ch...
متن کاملBudget Constrained Bidding by Model-free Reinforcement Learning in Display Advertising
Real-time bidding (RTB) is almost the most important mechanism in online display advertising, where proper bid for each page view plays a vital and essential role for good marketing results. Budget constrained bidding is a typical scenario in RTB mechanism where the advertisers hope to maximize total value of winning impressions under a pre-set budget constraint. However, the optimal strategy i...
متن کاملAutomatic Text Summarization Using Reinforcement Learning with Embedding Features
An automatic text summarization system can automatically generate a short and brief summary that contains a main concept of an original document. In this work, we explore the advantages of simple embedding features in Reinforcement leaning approach to automatic text summarization tasks. In addition, we propose a novel deep learning network for estimating Qvalues used in Reinforcement learning. ...
متن کاملDeep Reinforcement Learning for Sponsored Search Real-time Bidding
Bidding optimization is one of the most critical problems in online advertising. Sponsored search (SS) auction, due to the randomness of user query behavior and platform nature, usually adopts keyword-level bidding strategies. In contrast, the display advertising (DA), as a relatively simpler scenario for auction, has taken advantage of real-time bidding (RTB) to boost the performance for adver...
متن کامل